Bibliography
- E. Amaldi and R. Hauser. Boundedness theorems for the relaxation method. Under minor revision for Mathematics of Oper. Res., available from Optimization Online.
- E. Amaldi and V. Kann. The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science, 147:181-210, 1995.
- E. Amaldi, M. E. Pfetsch, and L. E. Trotter Jr. On the maximum feasible subsystem problem, IISs and IIS-hypergraphs. Math. Programming A, 95:533-554, 2003.
- K. P. Bennett and E. Bredensteiner. A parametric optimization method for machine learning. INFORMS Journal on Computing, 9:311-318, 1997.
- H. D. Block and S. A. Levin. On the boundedness of an iterative procedure for solving a system of linear inequalities. In Proceedings of AMS, pages 229-235, 1970.
- Y. Censor and S. A. Zenios. Parallel Optimization: Theory, algorithms and applications. Oxford University Press, 1997.
- J. Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing, 13:210-213, 2001.
- G. Codato and M. Fischetti. Combinatorial Benders’ cuts. In Proceedings of IPCO, volume 3064 of LNCS, pages 178-195. Springer, 2004.
- J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear programs. In Proceedings of STOC, pages 315-320. ACM Press, 2004.
- M. Frean. A “thermal” perceptron learning rule. Neural Comp., 4(6):946-957, 1992.
- J. L. Goffin. The relaxation method for solving systems of linear inequalities. Mathematics of Oper. Res., 5:388-414, 1980.
- H. J. Greenberg and F. H. Murphy. Approaches to diagnosing infeasible linear programs. ORSA Journal on Computing, 3:253-261, 1991.
- E. K. Lee, R. J. Gallagher, and M. Zaider. Planning implants of radionuclides for the treatment of prostate cancer: An application of MIP. Optima, 61:1-7, 1999.
- O. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer et al., editor, Applied Mathematics and Parallel Computing, pages 175 – 188. Physica-Verlag, 1996.
- M. Mattavelli, V. Noel, and E. Amaldi. Fast line detection algorithms based on combinatorial optimization. In Proceedings of IWVF, LCNS 2059, pages 410-419. Springer, 2001.
- J. Meller, M. Wagner, and R. Elber. Solving huge linear programming problems for the design of protein folding potentials. Math. Programming B, 101:301-318, 2004.
- M. L. Minsky and S. Papert. Perceptrons: An introduction to computational Geometry. MIT Press, Cambridge, MA, 1988. Expanded edition.
- A. Nedic and D. Bertsekas. Incremental subgradient methods for nondifferentiable optimization. SIAM J. on Optimization, 12:109-138, 2001.
- M. E. Pfetsch. The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. PhD thesis, Dep. of Mathematics, Technische Universität Berlin, October 2002.
- B. T. Polyak. Random algorithms for solving convex inequalities. In D. Butnariu et al., editor, Inherently parallel algorithms in feasibility and other applications. Elsevier, 2001.
- F. Rossi, A. Sassano, and S. Smriglio. Models and algorithms for terrestrial digital broadcasting. Ann. of Oper. Res., (107):267-283, 2001.
- A. Schrijver. Theory of Linear and Integer Programming. Wiley & Sons, 1986.